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Magnetoresistance measuremerts have been carried out on bulk
samples of several members of the La,_ .4, MnQO; family (A = Sr
and Ca) with varying x or Mn** content. The magnitude of mag-
netoresistance (MR) is highest at the insulator-metal (I-M) tran-
sition when the transition temperature is relatively low (=250 K).
The relative MR (%MR) is essentially the same (40-50%) at 4.2 K
for all the compositions showing the I-M transition, namely
~15% at T = 300 K. Insulating compositions (small or large x)
show smaller %MR than the compositions that undergo the I-M
transition.  © 1995 Academic Press, Inc.

Giant magnetoresistance (GMR) has been observed re-
cently in films of perovskites of the generai formula
La;_ A, MnO;_; (A = Ca or Ba) (1-3). The GMR in these
films occurs in the temperature range 77-300 K when
the material is nearly metallic and ferromagnetic.
La;_ A, MnO, perovskites become ferromagnetic at rela-
tively low temperatures because of Mn**-O-Mn** inter-
actions. Fast hopping of the d-electrons between the two
oxidation states of Mn produces metallic behavior as the
materials become ferromagnetic (4-7), giving rise to an
insulator-metal (I-M}) transition at temperatures slightly
below the ferromagnetic Curie temperature. We have in-
vestigated the occurrence of GMR in bulk samples of
La;—,A.MnO, (A = Ca or Srj in order to compare the
results reported for the films of these oxides and to estab-
lish the general features of the GMR phenomenon in
these perovskites. Thus, it was our objective to establish
how factors such as the Mn** content and the associated
electronic and magnetic properties of these oxides deter-
mine the magnitude of the magnetoresistance. Fur-
thermore, the magnetoresistance behavior of the
La,_, Sr.MnQ; system, either in bulk or in film form, has
not been investigated hitherto.

! To whom correspondence should be addressed.

La;_ A, Mn0; (A = Ca or Sr) samples were prepared
by heating stoichiometric mixtures of La.(Qs;, CaCQO;,
SrCO,, and MnO; at 1223 K for 12 hr. The powder thus
obtained was ground, pelletized, and heated for another
12 hr at the same temperature. The phase purity of the
samples was checked using powder X-ray diffraction
techniques. The Mn** content in the samples was deter-
mined by redox titrations using polassium permanganate
and ferrous sulfate. Magnetoresistance measurements
were carried out on bar-shaped samples (0.5 mm X
1 mm X 10 mm). A maximum magnetic field of 6 T was
applied, using a superconducting solenoid perpendicular
to the direction of the current. The resistance of the sam-
ple was measured by the standard four-probe method, by
the low frequency (~20 Hz) ac method, and by the dc
method. The magnitude of the magnetoresistance is then
defined as [Ap/p(0)] = [p(H)} — p(0)]/p(0), where p(H)
and p(0} are the resistivities at magnetic field H and at
zero field, respectively.

The unit cell parameters and the crystal structures of
various La,_,A,MnO; compositions are presented in Ta-
ble 1, along with the Mn** content. With the increase in
Mn#t content, the oxides become cubic, as expected.
La;_Sr.MnQ; is rhombohedral when x = 0.1, 0.2, and
(.3, with %Mn** values of 27, 34, and 37, respectively. It
becomes cubic only when x = 0.4 (%Mn** > 40).
La,_.Ca,MnG; is rhombohedral when x = (.1 (%Mn =
19) and becomes cubic even at x = 0.2, when %Mn*t =
25. The parent LaMn(O; is known to become cubic when
ZMn*t = 33 (7).

Four-probe resistivity measurements on La;_, Sr,
MnQ; samples indicate an I-M transition at ~215 K (7))
when x = 0.1 and around 325 K when x = 0.3. The x =
0.5 composition was insulating in the 325-4 K range. The
resistivity and resistivity anomaly of these samples at Tpy
decreases with increasing x.

In Fig. I, we show the temperature variation of the
resistivity of LagoSrg ;MnO; at H = 0 and 6 T. We ob-
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TABLE 1
Structure Data and %Mn** in La;_ A, MnO,
A=Sr A=Ca
Crystal Lattice Crystal Lattice
X ZMntt structure® parameters ZeMnir structure? parameters
0.0 12 0 a= 5543A — — —
b= 5494 A
= 7805 A
0.1 27 R a= 55234 19 R a= 5480 A
a = 60.60° a = 60.40°
0.2 34 R a= S5.482A 25 C a= 7744 A
= 60.40°
0.3 37 R a= 5454 A 33 C a= 7699 A
o = 60,14°
0.4 41 C a= 7.721 A 39 ol a= 7677 A
0.5 47 C a= 7714 A 44 C a= T7.668 A

¢ (0, orthorhombic; R, rhombohedral; C, cubic.

serve a significant decrease in resistivity at Ty on appli-
cation of a magnetic field. The temperature variation of
magnetoresistance (Fig. 2) clearly shows that %MR is
maximum at Tiy (40%) and decreases at higher tempera-
tures. The variation of %MR with magnetic field at 4.2 K
(Fig. 3) shows a maximum value of 45% at this tempera-
ture,

Lag 1Sry ;sMnO; with Ty = 325 K shows a small change
in MR (~20%) at Ty (Fig. 1). Furthermore, the %2MR
decreases monotonically with increasing temperature
(Fig. 2). The %MR at 4.2 K is, however, nearly the same
as that of the x = 0.1 composition {Fig. 3). The x = 0.5
composition, which is an insulator, showed low magneto-
resistance, the MR being 8 at 265 K and 35 at 4.2 K.

Some important conclusions from the magnetoresis-
tance measurements on La,_, Sr, MnO; compositions are
the following: all compositions show comparable %MR
at high temperatures (~15% at T = 300 K) at 4.2 K (35-
45%). It is in the intermediate temperature range, espe-
cially close to Tiv, that the %MR differs significantly
from one composition to another, The x = 0.1 composi-
tion with the highest resistivity, as well as the largest
resistivity anomaly at Tpy (at zero field), shows the high-
est %oMR, the low Ty also being favorable for this 1o
happen. Clearly, a GMR effect is favored when Tyy is
relatively low (<250 K).

Our investigations of the La,-,Ca, MnO; compositions
corroborate the results obtained with La;_.Sr.MnQs.

FIG. 1.

Magnetoresistance behavior of La,_,Sr,MnQ; samples.
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FIG. 2. Temperature variation of %MR in La,_, 5, MnO; samples
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FIG. 3. Variation of %MR in La,_.Sr,MnO; with applied field at
4.2 K.
The x = 0.1 composition of La;.,Ca,MnO; shows an

I-M transition around 220 K with a significant resistivity
anomaly, whereas the x = 0.3 composition shows a tran-
sition around 260 K, with a smaller resistivity anomaly.
The resistivity of the x = 0.1 composition is also cansid-
erably higher (~4000 mohm cm)} at Tjy than that of the
x = 0.3 composition (~200 mohm ¢m). In Fig. 4, we show
the temperature variation of %MR for these two compo-
sitions. We see that at Ty, the x = 0.1 composition has a
much higher magnetoresistance (709} compared to the
x = 0.3 composition (56%). At 4.2 K, however, both the
x = 0.1 and 0.3 compositions show a similar MR (~44).
It appears that the actual crystal structure is not as cru-
cial as the occurrence of the I-M transition at relatively
low temperatures. The Mn** content should, however,
be sufficient to generate a transition associated with fer-
romagnetism, In the parent LaMnQO;, %MR is found to be
70% at Tyy (220 K) when %Mn** is 33 (8).

Two other features of the GMR phenomenon in
La,_.A,MnQ, systems are noteworthy. The first is the
appearance of a peak in the variation of magnetoresis-
tance with temperature (Figs. 2 and 4) in some of the
compositions. Apparently, there are two competing con-
tributions, one in which %MR decreases smoothly with
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FIG. 4. Temperature variation of %MR in La,_,Ca MnO, samples
at 6 T.

increasing temperature and another which gives a peak at
Tim. the two contributions being controlled by different
factors. The second contribution is apparently more sen-
sitive to stoichiometry, homogeneity, and other such fac-
tors. The second feature is the sharp drop in %MR in
small magnetic fields (Fig. 3), which is likely to be associ-
ated with the properties of domains. Further studies are
in progress to understand the GMR phenomenaon in these
oxide systems in greater detail.
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